<A NVIDIA

LLVM-MCA Correlation for AArché4

Ricardo Jesus & Sjoerd Meijer

A.k.a “Performance Analysis Journey for our new CPU"”

Understanding this anomaly. small difference in straight-line asm code caused a 10% overall regression.

Slow Vector Code Fast Scalar Code
1dr h2, [sp, #166] ldp s3, s4, [sp, #184]
uzpl v0.4s, v0.4s, vl.4s fadd di4, d9, di4
1dur a3, [sp, #200] fadd d10, d10, ds8
fadd dl11, d9, dil1l add x20, x20, #1
add x20, x20, #1 fadd s2, s4, sZ
fadd d12, d12, d8 fadd sO, s3, sO
mov v0.s[1], v1.s[1] stp sO, s2, [sp, #184]
ucvtf s2, s2 Ldp sO0, s2, [sp, #192]
mov v0.s[3], v2.s[0] fadd sO, s0, sl
fadd v0.4s, v3.4s, v0.4s ldr hl, [sp, #150]
stur g0, [sp, #200] ucvtt sl, sl
fadd sl, s2, sl
stp sO, sl1, [sp, #192]

Observations/expectations:
Number of instructions is about the same,
Expect similar performance, maybe slightly worse, but not 10% worse
Can't tell anything more about this...

Don't know why should we not vectorise this, or how to vectorise this differently.

Missing a tool for compiler engineers and our new CPU to evaluate/implement different code-generation strategies

2 NVIDIA

Outline

Performance analysis journey:

Part 1: Looking for an open-source performance analysis tool for compiler-engineers to:
Understand, evaluate and choose different code-generation strategies.

Part 2: Investigate the quality of this tool
Correlate predictions with results hardware results: how well do they match up?

For the new NVIDIA Grace CPU Superchip:

High-performance CPU for HPC, data-centres and cloud computing
Up to 144 Arm Neoverse V2 CPU cores

Our findings are not specific to Grace: all (verified) generic AArch64 observations.

Solution and contributions to enable this:
Stepl: Performance analysis tool: enable LLVM-MCA for Grace
Step 2.1: Correlation: automatically extract hot code parts from workloads.
Step 2.2: Verify how good static performance predictions are with hardware results (correlation).
Step 2.3: If results don't match up, fix any issues, goto step 3.

3 NVIDIA

Chapter 1: Performance Analysis Tools / Flow

- Create a micro-benchmark: time-consuming, error prone, may not give the insights we need!

- Another approach: cycle accurate simulation.

- Most accurate and there's no substitute,
» but slow, more difficult to use and not always available.

* We would like a performance analysis tool with different trade-offs:
» Faster than cycle-accurate simulation and capturing the performance trend well.

Performance
Analysis tool?

Bottleneck
Pipeline behaviour
App
IPC

Resource utilisation

Hotspot Analysis

4 <ANVIDIA. I

Timeline view of instructions

Slow Vector Code Fast Scalar Code
Timeline view: Timellne view:
0123456789 012345
Index 0123456789 Index 0123456789
0, 0] DeeeeeceER . : : 1dr h2, [sp, #166] [0, 0] DeeceeeekR . : ldp s3, s4, [sp, #184]
0,1] DeeE----R . : . uzpl v0.4s, v0.4s, vl.4s 0,1 Deeb-—=-R . . fadd di4, d9, dil4
0, 2] DeeeeceeER . : : ldur g3, [sp, #200] :0,2: Deek----R . : faadd al0, 410, d8
0,3 DeeE----R . : . fadd di11, d9, di1 [0, 3. DeE-——-—- R . . add x20, x20, #1
0,47 DeF————— R .]] add x20, x20, #1 (0, 4] D====eeER . . fadd s2, s4, s2
0, 5] D=eeE---R fadd dl2, dl2, d8 50,5; D======eeER : fadd sO, s3, sO0
(0, 6] D==eceeecER. : : mov v0.s[1], v1.s[1] [0, 6] D========eekbkR . Stp sO0, s2, [sp, #184]
(0,7 D======geER . : ucvtf s2, s2 1O, 7] .DeeeeeeE---R . ldp s0, s2, [sp, #192]
[0, 8] .D=======ceeeeckER : mov v0.s[3], v2.s[0] 10,8 . D======eek-R . faadd sO, s0, sl
[0, 9] . D============ceER . fadd v0.4s, v3.4s, v0.4s (0, 9] .Deeeeeeck---R . ldr hl, [sp, #150]
(0,10] .D==============¢ceER stur g0, [sp, #200] [0, 10] .D======eeE-R . ucvtf sl, sl
(0,11 .D========eeER . fadd sl, sz, sl
(0,12 . D==========¢ceFER stp sO, sl1, [sp, #192]

Now we can see that dependency-chains increase the critical path.

Understanding the behaviour of instruction sequences is
fundamental to evaluate different code-generation strategies, and
ultimately select and implement the best one.

5 NVIDIA

LLVM-MCA

is a static performance analysis tool ("Machine Code Analyser")
Part of the [lvm-project and reuses different components,

Relies on Scheduling models, which are used for:
instruction scheduling and code-generation (LLVM, compiler)
performance analysis (LLVM-MCA)

Given a sequence of assembly instructions:
Provides instruction information such as latency and reciprocal throughput
Estimates performance metrics such as IPC, uOps Per Cycle and Block RThroughput
ldentifies hardware resources consumption and pressure
Trace execution reports with instructions’ state transitions

Step 1: Enable LLVM-MCA for the Grace CPU:

Contributed a scheduling model for the Neoverse V2 core in

Checked that the model didn’t lead to performance regressions
Neoverse V2 core used the Neoverse N2 model for instruction scheduling/analysis

Result of playing and looking at LLVM-MCA reports and timelines:
LLVM instruction cost-model patches, e.g.: FADD/FSUB (), LD1R (), and MOV/INS ()

6 NVIDIA

https://llvm.org/docs/CommandGuide/llvm-mca.html
https://reviews.llvm.org/D151894
https://reviews.llvm.org/D146033
https://reviews.llvm.org/D141602
https://reviews.llvm.org/D144508

Chapter 2: Correlation

Are LLVM-MCA's estimates accurate? Can we trust the predictions?
Static performance predictions should show the same trends as hardware.

LLVM-MCA has limitations, e.q..
By design, it doesn’t predict the frontend throughput, and
Doesn't correctly model instructions that affect control flow.
Assumptions made by the processor model used by the tool.
Quality of the scheduling model affects the performance analysis.
Scheduling models do not describe all processors’ details.

Open guestions:
Does this matter?
How do we define “accurate” for these performance predictions?

We need to define some criteria and our correlation methodology.

/ NVIDIA

Correlation Methodology

For all apps in a set of interesting workloads, the predicted performance is e.qg. within 5% of hardware:
redicted(app;
0.95 < Predictedlarpi) 4 o5
runtime(app;)
Do this for a relatively large number of apps,

That should give confidence in the estimated performance numbers.
|s preferably automated.

But LLVM_MCA is not the tool that calculates "predicted (app;)”
It consumes assembly code and analyses straight line code.

Our Approach: compare two equivalent assembly codes, generated from the same source-code

Select one C/C++ kernel (inner-loop) from an app and generate:

Two assembly kernels A and B, where A = B'.
Equivalent = variants A and B process the same number of data elements.

Example when they are not equivalent:
It one variant has an unrolled loop.
It one variant has been loop-vectorized.

Generate these variants by compiling the source with different compiler options (allows automation).
8 NVIDIA.

Step 2.1: Extract Kernels for TSVC-2 (LLVM test-suite)

for (int nl = 0; nl < iterationsx10; Annotate C kernels with MCA START / STOP markers

MCA_START(s116): _ :
for (int i = 0; i < LEN_1D - 5; i Markers influence codegen, so place them around inner-loops

ali] = a[1 + 1] * a[1]:

ali ali + 2] * a[i + 1]; Compile it to generate comparable A and B assembly version:

all * al1l

3] , . . .
ali + 4] * a[i ; - Disable Loop vectorizer: -fno-vectorize

' O X : .
a[i + 5] - Toggle SLP vectorizer on/off: -fno-slp-vectorize

1
2
3
4

d d d Ll

* a1l

h

MCA_STOP(s116);
//dummy(a, b, c, d, e, 0.); EXtraCt the kernels:

- Find the MCA START/STOP markers in assembly,

, , - Recognise the loop and extract the inner-loop body, and
Disable Loop Vectoriser Disable Loop Vectoriser _Run LLVM-MCA on A and B
Disable SLP Vectoriser Enable SLP Vectoriser |

Correlation expectation is:

predicted(kernel_A) < predicted(kernel_B)

. [x8, #-12]
. X9, #5
, Xx19 p—
.16b, v0.16b, v1.16b, #12
.s[0], vO.s[0O] : :
.4s, v2.4s, vl1.4s Tuntlme(app—A) < Tuntlme(app_B)
, [x8, #-16]
, [x8, #4]
. s0, vl.s[3]
, [x8], #20
.LBB10_2

1x4+1fmul

.LBB10O_2

5 X 1 fmul 9 NVIDIA

speedup (%)

400
350
300
250
200
150
100

o0

Step 2.2: Compare Predictions with Hardware Runs

Predicted(kernel A) < Predicted(kernel B)
=> runtime(app_A) < runtime(app_B)

IR Real (Grace) +
e (2) Incorrect predictions Estimated (MCA) -

000

000

*

QH||||||||||||||||||||||||||||||||||

NAANNT A ANNAND AANANNLNONACDNESSSN S>> ===

DNNNNNNST S FODDNRON—HAA—AA—"N>TC > 2EETAEET

SPASERS IS S SIS S S S IS S S IS S S IS fan R R R L Lo L B i SN oW = =

NDANDDDDNDDNNNDNNNNITTTT I <t 22855755 >
s HDONONOD D > 2

loop

Observations:

1.

o > W i

Correct predications: MCA correctly predicts speedups (within ~10% of measured values) for s351 & s352

Incorrect predictions: hardware shows ~10-20% speedups with SLP, MCA predicts ~75-85% slowdowns for s116 & s353
No MCA versions: limitations of scripts recognizing the markers and loops

Compiler flags didn't result in different codegen

Potentially interesting points

10

<ANVIDIA. I

Step 2.3: Fix identified Issues

SchedModel:

Fixed the N2 model for some ALU instructions in
Trivial fix, but high impact.

Fixed instruction forwarding descriptions (part of neoverse v2 schedmodel commit).
Fix Zero-latency moves that were not modelled correctly in

Fixed (partially) post/pre-index loads/stores in
None had any (measured) impact on code-generation, so only beneficial for the LLVM-MCA perf analysis use-case.

LLVM-MCA:

Instruction fusion

Some instruction pairs can be accelerated when they are adjacent in program order (e.g. cmp + b.cond)
Important for SVE and other instructions (e.g. MVPRFX)

Accurate throughputs
Due to the way throughputs are computed in MCA it's not always possible to model exact values
Not crucial as it affects very few instructions, and difference between computed and real throughput is minimal

11 NVIDIA

https://reviews.llvm.org/D145370
https://reviews.llvm.org/D159443
https://reviews.llvm.org/D159254

LLVM-MCA Findings, Cont’d

Post increment stores: two operations:
Store to the address,

Increment of the address

[0,0] DeeeER . umulh x2, x1, x1 [0,0] DeeeER .
[0,1] D===eER : str x2, [x1], #0 [0,1] D===eER.
[1,0] D====eeekER. umulh x2, x1, x1 [0,2] DeE - - -R.
[1,1] D=======eER str x2, [x1], #0 [1,0] D=eeekER.

[1,1] D====eER
[1,2] D=eE---R

umulh
str
add
umulh

str
add

x1l, x1
[x1]
x1, #O
x1l, x1
[x1]
x1, #O

STR doesn’t start until all inputs are available
Second MUL could start earlier, doesn’'t need to wait for the STR to finish.
Not accurate for OOO architectures with uOps.

Not a tablegen fix, so is an open question, see our discourse

12

NVIDIA

https://discourse.llvm.org/t/how-can-i-model-an-instruction-that-gets-broken-down-into-two-ops/72012

Observations, Lessons Learned & Recommendations

Found several issues in the cost-model and in the different scheduling models.
Recommendation: correlation seems to be a good exercise to find schedmodel problems.

Correlation is time-consuming and surprisingly (?) not very straightforward (lesson learned).
Practical issues that make doing a large sweep challenging.
Toggled the vectorizer on/off to generate different code, should try different ways, e.g. -02 vs. -03
Or a completely different way?

Have not collected enough data to conclude whether LLVM-MCA is well correlated,
But we do know now that predictions can be off for some cases,
And have found cases where it predicts the trend well.

LLVM-MCA is an excellent tool
Helped us in understanding and solving performance issues.
This correlation study and resulting experience that we got really helps reading/judging the predictions.

13 NVIDIA.

