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A.k.a “Performance Analysis Journey for our new CPU”
Problem Statement

• Understanding this anomaly: small difference in straight-line asm code caused a 10% overall regression.

• Observations/expectations:
• Number of instructions is about the same,
• Expect similar performance, maybe slightly worse, but not 10% worse
• Can't tell anything more about this...

• Don't know why should we not vectorise this, or how to vectorise this differently.

• Missing a tool for compiler engineers and our new CPU to evaluate/implement different code-generation strategies

Slow Vector Code Fast Scalar Code

ldp s3, s4, [sp, #184]
fadd d14, d9, d14
fadd d10, d10, d8
add x20, x20, #1
fadd s2, s4, s2
fadd s0, s3, s0
stp s0, s2, [sp, #184]
ldp s0, s2, [sp, #192]
fadd s0, s0, s1
ldr h1, [sp, #150]
ucvtf s1, s1
fadd s1, s2, s1
stp s0, s1, [sp, #192]

ldr h2, [sp, #166]
uzp1 v0.4s, v0.4s, v1.4s
ldur q3, [sp, #200]
fadd d11, d9, d11
add x20, x20, #1
fadd d12, d12, d8
mov v0.s[1], v1.s[1]
ucvtf s2, s2
mov v0.s[3], v2.s[0]
fadd v0.4s, v3.4s, v0.4s
stur q0, [sp, #200]
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Outline

Performance analysis journey:

• Part 1: Looking for an open-source performance analysis tool for compiler-engineers to:
• Understand, evaluate and choose different code-generation strategies.

• Part 2: Investigate the quality of this tool
• Correlate predictions with results hardware results: how well do they match up? 

• For the new NVIDIA Grace CPU Superchip:
• High-performance CPU for HPC, data-centres and cloud computing
• Up to 144 Arm Neoverse V2 CPU cores

• Our findings are not specific to Grace: all (verified) generic AArch64 observations.

• Solution and contributions to enable this:
• Step1:      Performance analysis tool: enable LLVM-MCA for Grace
• Step 2.1:  Correlation: automatically extract hot code parts from workloads.
• Step 2.2:  Verify how good static performance predictions are with hardware results (correlation).
• Step 2.3:  If results don’t match up, fix any issues, goto step 3.
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Chapter 1: Performance Analysis Tools / Flow

• Create a micro-benchmark: time-consuming, error prone, may not give the insights we need!

• Another approach: cycle accurate simulation.
• Most accurate and there's no substitute, 
• but slow, more difficult to use and not always available.

• We would like a performance analysis tool with different trade-offs:
• Faster than cycle-accurate simulation and capturing the performance trend well. 

Linux Perf ?
Bottleneck

Hotspot Analysis

App
Pipeline behaviour

IPC

Resource utilisation

Performance
Analysis tool?
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Timeline view of instructions

• Now we can see that dependency-chains increase the critical path.

• Understanding the behaviour of instruction sequences is
• fundamental to evaluate different code-generation strategies, and
• ultimately select and implement the best one.

Timeline view:
012345

Index 0123456789

[0,0] DeeeeeeER . . ldp s3, s4, [sp, #184]
[0,1] DeeE----R . . fadd d14, d9, d14
[0,2] DeeE----R . . fadd d10, d10, d8
[0,3] DeE-----R . . add x20, x20, #1
[0,4] D====eeER . . fadd s2, s4, s2
[0,5] D======eeER . fadd s0, s3, s0
[0,6] D========eeER . stp s0, s2, [sp, #184]
[0,7] .DeeeeeeE---R . ldp s0, s2, [sp, #192]
[0,8] .D======eeE-R . fadd s0, s0, s1
[0,9] .DeeeeeeE---R . ldr h1, [sp, #150]
[0,10] .D======eeE-R . ucvtf s1, s1
[0,11] .D========eeER . fadd s1, s2, s1
[0,12] .D==========eeER stp s0, s1, [sp, #192]

Timeline view:
0123456789

Index 0123456789

[0,0] DeeeeeeER . . . ldr h2, [sp, #166]
[0,1] DeeE----R . . . uzp1 v0.4s, v0.4s, v1.4s
[0,2] DeeeeeeER . . . ldur q3, [sp, #200]
[0,3] DeeE----R . . . fadd d11, d9, d11
[0,4] DeE-----R . . . add x20, x20, #1
[0,5] D=eeE---R . . . fadd d12, d12, d8
[0,6] D==eeeeeER. . . mov v0.s[1], v1.s[1]
[0,7] D======eeER . . ucvtf s2, s2
[0,8] .D=======eeeeeER . mov v0.s[3], v2.s[0]
[0,9] .D============eeER . fadd v0.4s, v3.4s, v0.4s
[0,10] .D==============eeER stur q0, [sp, #200]

Slow Vector Code Fast Scalar Code
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LLVM-MCA
Static low-level performance analysis tool

• llvm-mca is a static performance analysis tool ("Machine Code Analyser")
• Part of the llvm-project and reuses different components,
• Relies on Scheduling models, which are used for:

1. instruction scheduling and code-generation (LLVM, compiler)
2. performance analysis (LLVM-MCA) 

• Given a sequence of assembly instructions:
• Provides instruction information such as latency and reciprocal throughput
• Estimates performance metrics such as IPC, µOps Per Cycle and Block RThroughput
• Identifies hardware resources consumption and pressure
• Trace execution reports with instructions’ state transitions

• Step 1: Enable LLVM-MCA for the Grace CPU:
1. Contributed a scheduling model for the Neoverse V2 core in D151894
2. Checked that the model didn’t lead to performance regressions

• Neoverse V2 core used the Neoverse N2 model for instruction scheduling/analysis

• Result of playing and looking at LLVM-MCA reports and timelines:
• LLVM instruction cost-model patches, e.g.: FADD/FSUB (D146033), LD1R (D141602), and MOV/INS (D144508)

https://llvm.org/docs/CommandGuide/llvm-mca.html
https://reviews.llvm.org/D151894
https://reviews.llvm.org/D146033
https://reviews.llvm.org/D141602
https://reviews.llvm.org/D144508
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Chapter 2: Correlation

• Are LLVM-MCA's estimates accurate? Can we trust the predictions?
• Static performance predictions should show the same trends as hardware.

• LLVM-MCA has limitations, e.g.:
• By design, it doesn’t predict the frontend throughput, and
• Doesn't correctly model instructions that affect control flow.
• Assumptions made by the processor model used by the tool.
• Quality of the scheduling model affects the performance analysis.
• Scheduling models do not describe all processors' details.

• Open questions:
• Does this matter? 
• How do we define “accurate” for these performance predictions?

• We need to define some criteria and our correlation methodology. 
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Correlation Methodology

• For all apps in a set of interesting workloads, the predicted performance is e.g. within 5% of hardware: 

• 0.95 ≤ !"#$%&'#$()!!!)
"+,'%-#()!!!)

≤ 1.05
• Do this for a relatively large number of apps,
• That should give confidence in the estimated performance numbers.
• Is preferably automated.

• But LLVM_MCA is not the tool that calculates “𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑎𝑝𝑝!)”
• It consumes assembly code and analyses straight line code.

• Our Approach: compare two equivalent assembly codes, generated from the same source-code 

• Select one C/C++ kernel (inner-loop) from an app and generate:
• Two assembly kernels A and B, where 𝑨 ≈ 𝑩 .
• Equivalent = variants A and B process the same number of data elements.
• Example when they are not equivalent:

• If one variant has an unrolled loop.
• If one variant has been loop-vectorized.

• Generate these variants by compiling the source with different compiler options (allows automation).
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Step 2.1: Extract Kernels for TSVC-2 (LLVM test-suite)

1. Annotate C kernels with MCA START / STOP markers
• Markers influence codegen, so place them around inner-loops

2. Compile it to generate comparable A and B assembly version:
- Disable Loop vectorizer:           -fno-vectorize
- Toggle SLP vectorizer on/off:  -fno-slp-vectorize

3. Extract the kernels:
- Find the MCA START/STOP markers in assembly,
- Recognise the loop and extract the inner-loop body, and
- Run LLVM-MCA on A and B.

4. Correlation expectation is:

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑘𝑒𝑟𝑛𝑒𝑙_𝐴 < 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑘𝑒𝑟𝑛𝑒𝑙_𝐵

⇒

 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑎𝑝𝑝_𝐴 < 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑎𝑝𝑝_𝐵)

A B

Disable Loop Vectoriser
Disable SLP Vectoriser

Disable Loop Vectoriser
Enable SLP Vectoriser

5 x 1 fmul

1 x 4 + 1 fmul
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Step 2.2: Compare Predictions with Hardware Runs
Predicted(kernel_A) < Predicted(kernel_B) 

=> runtime(app_A) < runtime(app_B)

Incorrect predictions

Correct predictions

Observations:

1. Correct predications:  MCA correctly predicts speedups (within ~10% of measured values) for s351 & s352

2. Incorrect predictions: hardware shows ~10–20% speedups with SLP, MCA predicts ~75–85% slowdowns for s116 & s353

3. No MCA versions: limitations of scripts recognizing the markers and loops

4. Compiler flags didn’t result in different codegen

5. Potentially interesting points

(2)

(1)

(3) (4)

(5)
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Step 2.3: Fix identified Issues

SchedModel:

1. Fixed the N2 model for some ALU instructions in D145370
• Trivial fix, but high impact. 

2. Fixed instruction forwarding descriptions (part of neoverse v2 schedmodel commit).

3. Fix Zero-latency moves that were not modelled correctly in D159433.

4. Fixed (partially) post/pre-index loads/stores in D159254

None had any (measured) impact on code-generation, so only beneficial for the LLVM-MCA perf analysis use-case.

LLVM-MCA:

1. Instruction fusion
• Some instruction pairs can be accelerated when they are adjacent in program order (e.g. cmp + b.cond)
• Important for SVE and other instructions (e.g. MVPRFX)

2. Accurate throughputs
• Due to the way throughputs are computed in MCA it's not always possible to model exact values
• Not crucial as it affects very few instructions, and difference between computed and real throughput is minimal

https://reviews.llvm.org/D145370
https://reviews.llvm.org/D159443
https://reviews.llvm.org/D159254
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LLVM-MCA Findings, Cont’d

Post increment stores: two operations:

1. Store to the address,

2. Increment of the address

• STR doesn’t start until all inputs are available

• Second MUL could start earlier, doesn’t need to wait for the STR to finish.

• Not accurate for OOO architectures with uOps.

• Not a tablegen fix, so is an open question, see our discourse discussion.

[0,0]    DeeeER .    umulh x2, x1, x1 
[0,1]    D===eER .    str    x2, [x1], #0 
[1,0]    D====eeeER.    umulh x2, x1, x1
[1,1]    D=======eER str    x2, [x1], #0

[0,0]    DeeeER .     umulh x2, x1, x1 
[0,1]    D===eER.     str    x2, [x1] 
[0,2]    DeE---R.     add x1, x1, #0 
[1,0]    D=eeeER.     umulh x2, x1, x1 
[1,1]    D====eER str    x2, [x1] 
[1,2]    D=eE---R     add x1, x1, #0

https://discourse.llvm.org/t/how-can-i-model-an-instruction-that-gets-broken-down-into-two-ops/72012
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Observations, Lessons Learned & Recommendations

1. Found several issues in the cost-model and in the different scheduling models.
• Recommendation: correlation seems to be a good exercise to find schedmodel problems.

2. Correlation is time-consuming and surprisingly (?) not very straightforward (lesson learned).
• Practical issues that make doing a large sweep challenging.
• Toggled the vectorizer on/off to generate different code, should try different ways, e.g. –O2 vs. –O3
• Or a completely different way?

3. Have not collected enough data to conclude whether LLVM-MCA is well correlated,
• But we do know now that predictions can be off for some cases,
• And have found cases where it predicts the trend well.

4. LLVM-MCA is an excellent tool
• Helped us in understanding and solving performance issues.
• This correlation study and resulting experience that we got really helps reading/judging the predictions.


