
Automatic indirect memory access
instructions generation for pointer
chasing patterns

Przemysław Ossowski

Co-authors:

Sebastian Szkoda, Adam Perdeusz, Łukasz Odzioba,

Przemysław Karpiński, Marcin Koss, Marek M. Landowski

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A – Approved for Public Release, Distribution Unlimited

Intel ConfidentialDepartment or Event Name 2LLVM Developers’ Meeting 2022 2

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access

Intel ConfidentialDepartment or Event Name 3LLVM Developers’ Meeting 2022 3

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns

Intel ConfidentialDepartment or Event Name 4LLVM Developers’ Meeting 2022 4

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access

Core

MC 0 MC 1

2
1 4

3

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns
Direct load with pointer chasing scenario – distributed
memory example, each address is in a separate Memory
Controller (MC)

Intel ConfidentialDepartment or Event Name 5LLVM Developers’ Meeting 2022 5

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access

Core

MC 0 MC 1

2
1 4

3

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns
Direct load with pointer chasing scenario – distributed
memory example, each address is in a separate Memory
Controller (MC)

Intel ConfidentialDepartment or Event Name 6LLVM Developers’ Meeting 2022 6

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access

Core

MC 0 MC 1

2
1 4

3

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns
Direct load with pointer chasing scenario – distributed
memory example, each address is in a separate Memory
Controller (MC)

Intel ConfidentialDepartment or Event Name 7LLVM Developers’ Meeting 2022 7

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access

Core

MC 0 MC 1

2
1 4

3

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns
Direct load with pointer chasing scenario – distributed
memory example, each address is in a separate Memory
Controller (MC)

Intel ConfidentialDepartment or Event Name 8LLVM Developers’ Meeting 2022 8

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access

Core

MC 0 MC 1

2
1 4

3

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns
Direct load with pointer chasing scenario – distributed
memory example, each address is in a separate Memory
Controller (MC)

Intel ConfidentialDepartment or Event Name 9LLVM Developers’ Meeting 2022 9

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access Direct load with pointer chasing scenario – distributed

memory example, each address is in a separate Memory
Controller (MC)

Core

MC 0 MC 1

2
1 4

3

Core

MC 0 MC 12

1 3

Indirect load with pointer chasing scenario

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns

• Indirect Memory Access
Instructions (IMAI)

Intel ConfidentialDepartment or Event Name 10LLVM Developers’ Meeting 2022 10

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access Direct load with pointer chasing scenario – distributed

memory example, each address is in a separate Memory
Controller (MC)

Core

MC 0 MC 1

2
1 4

3

Core

MC 0 MC 12

1 3

Indirect load with pointer chasing scenario

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns

• Indirect Memory Access
Instructions (IMAI)

Intel ConfidentialDepartment or Event Name 11LLVM Developers’ Meeting 2022 11

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access Direct load with pointer chasing scenario – distributed

memory example, each address is in a separate Memory
Controller (MC)

Core

MC 0 MC 1

2
1 4

3

Core

MC 0 MC 12

1 3

Indirect load with pointer chasing scenario

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns

• Indirect Memory Access
Instructions (IMAI)

Intel ConfidentialDepartment or Event Name 12LLVM Developers’ Meeting 2022 12

Pointer chasing

Memory access characteristics

• A chain of dependent loads

• Serialized address generation
and memory access Direct load with pointer chasing scenario – distributed

memory example, each address is in a separate Memory
Controller (MC)

Core

MC 0 MC 1

2
1 4

3

Core

MC 0 MC 12

1 3

Indirect load with pointer chasing scenario

x A[B[i] + j]

Pointer chasing – an example of memory access pattern

• Memory access patterns

• Indirect Memory Access
Instructions (IMAI)

Intel ConfidentialDepartment or Event Name 13LLVM Developers’ Meeting 2022 13

Applying IMAI

New built-ins

...compiled to two direct load instructions

C function with indirect load operation...

Intel ConfidentialDepartment or Event Name 14LLVM Developers’ Meeting 2022 14

Applying IMAI

New built-ins

• More complex instruction
...compiled to two direct load instructions

...compiled to indirect load instruction

C function with indirect load operation...

Intel ConfidentialDepartment or Event Name 15LLVM Developers’ Meeting 2022 15

Applying IMAI

New built-ins

• More complex instruction
...compiled to two direct load instructions

...compiled to indirect load instruction

C function with indirect load operation...

C function with indirect load represented with a built-in

• New built-ins
• Complicated usage

• Manual modification of code

Intel ConfidentialDepartment or Event Name 16LLVM Developers’ Meeting 2022 16

Applying IMAI

New built-ins

• More complex instruction
...compiled to two direct load instructions

...compiled to indirect load instruction

C function with indirect load operation...

C function with indirect load represented with a built-in

• New built-ins
• Complicated usage

• Manual modification of code

• LLVM IR with new intrinsic
• Lacks common optimizations on

load and store instructions

* LLVM IR stands for LLVM Intermediate Representation

Intel ConfidentialDepartment or Event Name 17LLVM Developers’ Meeting 2022 17

Automatic pattern detection

C function with indirect load

Intel ConfidentialDepartment or Event Name 18LLVM Developers’ Meeting 2022 18

Automatic pattern detection

• DAG Instruction Selection
• Common optimizations on ‘load’

and ‘store’ instructions applied

• Pattern with a constraint – first load
‘hasOneUse’

C function with indirect load

DAG with searching pattern

* DAG stands for Directed Acyclic Graph

Intel ConfidentialDepartment or Event Name 19LLVM Developers’ Meeting 2022 19

Automatic pattern detection

• DAG Instruction Selection
• Common optimizations on ‘load’

and ‘store’ instructions applied

• Pattern with a constraint – first load
‘hasOneUse’

C function with indirect load

DAG with selected indirect load instruction – LOAD_IND_R

DAG with searching pattern

* DAG stands for Directed Acyclic Graph

Intel ConfidentialDepartment or Event Name 20LLVM Developers’ Meeting 2022 20

Automatic pattern detection

• DAG Instruction Selection
• Common optimizations on ‘load’

and ‘store’ instructions applied

• Pattern with a constraint – first load
‘hasOneUse’

C function with indirect load

DAG with selected indirect load instruction – LOAD_IND_R

DAG with searching pattern

• It might be not enough –
other constraints

* DAG stands for Directed Acyclic Graph

Intel ConfidentialDepartment or Event Name 21LLVM Developers’ Meeting 2022 21

Intel® PIUMA
Programmable Integrated Unified Memory Architecture

• IMAI's on uncached data

Intel ConfidentialDepartment or Event Name 22LLVM Developers’ Meeting 2022 22

Intel® PIUMA
Programmable Integrated Unified Memory Architecture

• IMAI's on uncached data

• Caching is configurable
• User knows what is cached

• Compiler doesn’t know

Intel ConfidentialDepartment or Event Name 23LLVM Developers’ Meeting 2022 23

Intel® PIUMA
Programmable Integrated Unified Memory Architecture

• IMAI's on uncached data

Original C function with indirect load
• Caching is configurable

• User knows what is cached

• Compiler doesn’t know

• Compilation flag per module
• Low flexibility

Intel ConfidentialDepartment or Event Name 24LLVM Developers’ Meeting 2022 24

Intel® PIUMA
Programmable Integrated Unified Memory Architecture

• IMAI's on uncached data

C function implementing indirect load with #pragma

Original C function with indirect load
• Caching is configurable

• User knows what is cached

• Compiler doesn’t know

• Compilation flag per module
• Low flexibility

• #pragma piuma indirect-allow
• Fine-granularity

• Small code modification

• Abstracts from instruction set details

Intel ConfidentialDepartment or Event Name 25LLVM Developers’ Meeting 2022 25

Handling #pragma

• LLVM IR CodeGen – new basic blocks
define double @foo(i64* %indices, double* %x) {

entry:

...

br label %allowind.start

allowind.start:

%0 = load double*, double** %x.addr, align 8

...

%3 = load double, double* %arrayidx, align 8

br label %allowind.end

allowind.end:

ret double %3

}

Intel ConfidentialDepartment or Event Name 26LLVM Developers’ Meeting 2022 26

Handling #pragma

• LLVM IR CodeGen – new basic blocks
define double @foo(i64* %indices, double* %x) {

entry:

...

br label %allowind.start

allowind.start:

%0 = load double*, double** %x.addr, align 8

...

%3 = load double, double* %arrayidx, align 8

br label %allowind.end

allowind.end:

ret double %3

}

• Pass - marking with Metadata
define double @foo(i64* %indices, double* %x) {

entry:

%0 = load i64, i64* %indices, align 8, !allow.ind !6

%idx = getelementptr inbounds double, double* %x, i64 %0

%1 = load double, double* %idx, align 8, !allow.ind !6

ret double %1

}

Intel ConfidentialDepartment or Event Name 27LLVM Developers’ Meeting 2022 27

Handling #pragma

• LLVM IR CodeGen – new basic blocks

Pattern applied only on MemSDNodes marked with
MOIndirectAllow flag

define double @foo(i64* %indices, double* %x) {

entry:

...

br label %allowind.start

allowind.start:

%0 = load double*, double** %x.addr, align 8

...

%3 = load double, double* %arrayidx, align 8

br label %allowind.end

allowind.end:

ret double %3

}

• Pass - marking with Metadata

• DAG Builder – marking with new
MachineMemOperand::Flags

define double @foo(i64* %indices, double* %x) {

entry:

%0 = load i64, i64* %indices, align 8, !allow.ind !6

%idx = getelementptr inbounds double, double* %x, i64 %0

%1 = load double, double* %idx, align 8, !allow.ind !6

ret double %1

}

Intel ConfidentialDepartment or Event Name 28LLVM Developers’ Meeting 2022 28

Summary

IMAI in Clang and LLVM:
• Built-in functions

• Automated pattern detection

• Compilation flag

• #pragma

Acknowledgments:
• Josh Fryman, Mariusz Sikora, Radosław Tyl, Maciej Grzywacz, Intel® PIUMA Team

More about Intel® PIUMA:
• https://arxiv.org/pdf/2010.06277.pdf

https://arxiv.org/pdf/2010.06277.pdf

© Intel Corporation. Intel, the Intel logo, and other Intel
marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

https://www.intel.com/LegalNoticesAndDisclaimers

