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Applying IMAI

New built-ins

...compiled to two direct load instructions
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Applying IMAI

New built-ins

• More complex instruction
...compiled to two direct load instructions

...compiled to indirect load instruction

C function with indirect load operation...

C function with indirect load represented with a built-in

• New built-ins
• Complicated usage

• Manual modification of code

• LLVM IR with new intrinsic
• Lacks common optimizations on 

load and store instructions

* LLVM IR stands for LLVM Intermediate Representation
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Automatic pattern detection

C function with indirect load
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Automatic pattern detection

• DAG Instruction Selection
• Common optimizations on ‘load’ 

and ‘store’ instructions applied

• Pattern with a constraint – first load 
‘hasOneUse’

C function with indirect load

DAG with searching pattern

* DAG stands for Directed Acyclic Graph
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Automatic pattern detection

• DAG Instruction Selection
• Common optimizations on ‘load’ 

and ‘store’ instructions applied

• Pattern with a constraint – first load 
‘hasOneUse’

C function with indirect load

DAG with selected indirect load instruction – LOAD_IND_R

DAG with searching pattern

• It might be not enough –
other constraints

* DAG stands for Directed Acyclic Graph
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Intel® PIUMA
Programmable Integrated Unified Memory Architecture

• IMAI's on uncached data
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Intel® PIUMA
Programmable Integrated Unified Memory Architecture

• IMAI's on uncached data

C function implementing indirect load with #pragma

Original C function with indirect load
• Caching is configurable

• User knows what is cached

• Compiler doesn’t know

• Compilation flag per module
• Low flexibility

• #pragma piuma indirect-allow
• Fine-granularity

• Small code modification

• Abstracts from instruction set details
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Handling #pragma

• LLVM IR CodeGen – new basic blocks
define double @foo(i64* %indices, double* %x) {

entry:

...

br label %allowind.start

allowind.start:

%0 = load double*, double** %x.addr, align 8

...

%3 = load double, double* %arrayidx, align 8

br label %allowind.end

allowind.end:

ret double %3

}
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Handling #pragma

• LLVM IR CodeGen – new basic blocks

Pattern applied only on MemSDNodes marked with 
MOIndirectAllow flag

define double @foo(i64* %indices, double* %x) {

entry:

...

br label %allowind.start

allowind.start:

%0 = load double*, double** %x.addr, align 8

...

%3 = load double, double* %arrayidx, align 8

br label %allowind.end

allowind.end:

ret double %3

}

• Pass - marking with Metadata

• DAG Builder – marking with new 
MachineMemOperand::Flags

define double @foo(i64* %indices, double* %x) {

entry:

%0 = load i64, i64* %indices, align 8, !allow.ind !6

%idx = getelementptr inbounds double, double* %x, i64 %0

%1 = load double, double* %idx, align 8, !allow.ind !6

ret double %1

}
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Summary

IMAI in Clang and LLVM:
• Built-in functions

• Automated pattern detection

• Compilation flag

• #pragma
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