EMSCRIPTEN -
COMPILING LLVM
BITCODETO
JAVASCRIPT (?1)

ALON ZAKAI (MOZILLA)

@kripken

| emscripten

http://emscripten.org/
http://twitter.com/#!/kripken

JavaScript..? At the LLVM developer's
conference..”?

Everything compiles into LLVM bitcode

The web is everywhere, and runs JavaScript

Compiling LLVM bitcode to JavaScript lets us run
~ everything, everywhere

THIS WORKS TODAY!

Game engines like Unreal Engine 3
Programming languages like Lua
Libraries too: like Bullet

http://www.unrealengine.com/html5/
http://kripken.github.io/lua.vm.js/repl.html
http://kripken.github.io/ammo.js/examples/new/ammo.html

Of course, usually native builds are best

But imagine, for example, that you wrote a new
feature in clang and want to let people give it a quick
test

Build once to JS, and just give people a URL
(and that's hot theoretical)

http://kripken.github.io/clangor/demo.html

OK, HOW DOES THIS WORK?

LLVM VS. JAVASCRIPT

Random (unrelated) code samples from each:

load 132* %p

shl 132 %r, 16

call 132 @calc(i32 %r, 132 %S)
abel %next

var x = new MyClass('name', 5).chain(function(arg) {
if (check(arg)) doMore({ x: arg, y: [1,2,3] });
else throw ‘stop’;

});

What could be more different? ;)

NUMERIC TYPES

LLVM 18,116, 132, float, double

JS double

PERFORMANCE MODEL

LLVM types and ops map ~1:1 to CPU

JS virtual machine (VM), just in time (JIT)
compilers w/ type profiling, garbage
collection, etc.

CONTROL FLOW

LLVM Functions, basic blocks & branches

JS Functions, ifs and loops - no goto!

VARIABLES

LLVM Local vars have function scope

JS Local vars have function scope

Ironic, actually - many wish JS
had block scope, like most
languages...

OK,HOW DO WE GET
AROUND THESE ISSUES?

i32 (i32* %p) {
load 132* %p
shl 132 %r, 16

call 132 (132 %r, 132 %s)
ret 132 %t

= Emscripten =

function func(p) {
var r = HEAP[p];

return calc(r, r << 16);

}

Almost direct mapping in many cases

Another example:

float array[5000];
int main() {

for (int 1 = 0; i < 5000; ++i) {
array[i] += 1.0f;
}
}

= Emscripten =

var g = Float32Array(5000);
function main() {

var a = 0, b = 0;

do {

a=>b<< 2;
gla >> 2] = +g[a >> 2] + 1.0;
b=b+ 1| 0;
} while ((b | 0) < 5000);
}

(this "style" of code is a subset of JS called asm.js)

http://asmjs.org/

JS AS A COMPILATION TARGET

JS began as a slow interpreted language
Competition = type-specializing JITs
Those are very good at statically typed code

LLVM compiled through Emscripten is exactly that,
So it can be fast

SPEED:MORE DETAIL

(x+1) |0 = 32-bitinteger + in modern JS VMs

Loads in LLVM IR become reads from typed array
In JS, which become reads in machine code

Emscripten’'s memory model is identical to LLVM's
(flat C-like, aliasing, etc.), so can use all LLVM opts

BENCHMARKS

asm.js benchmarks (micro / macro)

B Firefox
B Chrome

copy

corrections
fannkuch
fasta
linpack

memops

primes

skinning

box2d

bullet |—
java-nbody

lua-binarytrees | —
zlib

0 1 2 3 4 5 6 7 8 9 10 11 12 13

times slower than native=1 (lower numbers are better)

(VMs and Emscripten from Oct 28th 2013, run on 64-bit linux)

http://localhost:8888/benchmarks_nov4_2013.png

~“| emscripten

Open source (MIT/LLVM)
Began in 2010

Most of the codebase Is not the core compiler, but
libraries + toolchain + test suite

http://emscripten.org/

~“| emscripten

LLVM IR === JS S JS

Emscripten Emscripten
Compiler Optimizer

Compiler and optimizer written mostly in JS
Walit, that's not an LLVM backend..?

http://emscripten.org/

3 JS COMPILERS, 3 DESIGNS

Mandreel: Typical LLVM backend, uses tblgen,
selection DAG (like x86, ARM backends)

Duetto: Processes LLVM IR in llvm::Module (like
C++ backend)

Emscripten: Processes LLVM IR in assembly

http://www.mandreel.com/
http://leaningtech.com/duetto
http://emscripten.org/

EMSCRIPTEN'S CHOICE

JS Is such an odd target = wanted architecture with
maximal flexibility in codegen

Helped prototype & test many approaches

DOWNSIDES TOO

Emscripten currently must
do its own legalization (are
we doing it wrong?
probably...)

OPTIMIZING JS

Emscripten has 3 optimizations we found are very
important for JS

Whatever the best architecture Is, it should be able to
Implement those - let's go over them now

1.RELOOP

blockO:
» codel
br 11 %cond, label %block®, label %blockl

blockl:
; codel
br %label block0

Without relooping (emulated gotos):

var label = 0;
while (1) switch (label) {
case 0:

label cond ? 0 : 1; break;
case 1:

label 0: break;

1. RELOOP

block0:
; code0
br 11 %cond, label %block0®, label %blockl

blockl:
» codel
br %label block®

With relooping:

while (1) {
do {

} while (cond);

1.RELOOP

Relooping allows JS VM to optimize better, as it can
understand control flow

Emscripten Relooper code is generic, written in C++,
and used by other projects (e.g., Duetto)

This one seems like it could work in any architecture,
iIn an LLVM backend or not

2. EXPRESSIONIZE

var a = g(x);

var b = a + vy;

var ¢ = HEAP[b];

var d = HEAP[20];

var e = X +y + 7,
var f = h(d, e);
FUNCTION TABLE[c](f);

FUNCTION TABLE[HEAP[g(x) + yl(h(HEAP[20], x + y + 2));

2. EXPRESSIONIZE

Improves JIT time and execution speed: fewer
variables = less stuff for JS engines to worry about

Reduces code size

3.REGISTERIZE

var a = g(x) | 0;
varb=a+y | 0;

var ¢ = HEAP[b] | 0O;
var d = +HEAP[20];

3.REGISTERIZE

Looks like regalloc, but goal is different: Minimize #
of total variables (in each type), not spills

JS VMs will do regalloc, only they know the actual #
of registers

Benefits code size & speed like expressionize

OPTS SUMMARY

EXxpressionize & registerize require precise modelling
of JS semantics (and order of operations Is in some
cases surprising!)

Is there a nice way to do these opts in an LLVM
backend, or do we need a JS AST?

Questions: Should Emscripten change how it
Interfaces with LLVM? What would LLVM like
upstreamed?

CONCLUSION

LLVM bitcode can be compiled to JavaScript and
run in all browers, at high speed, in a standards-
compliant way

N\ /27
A7 TANN
€eo0e

For more info, see emscripten.org - feedback &
contributions always welcome

Thank you for listening!

http://emscripten.org/

