
1

A comparison of the DWARF

debugging information

produced by LLVM and GCC

by

Keith Walker

 A lightning talk at

 the LLVM Conference on 7th November 2013

2

Summary

 Debug information is mostly comparable to GCC.

 LLVM is more aggressive at doing function inlining resulting

in larger debug tables at –O2.

 Areas for improvement:

 Remove duplication of inlined function parameter information.

 Enumerators missing in pubnames.

 System included files in line table if referenced by symbols.

 Generate stack information for ARM.

 Generate stack information for AARCH64 function epilogues.

 debug_types can provide significant improvements in reducing size of

the debug information.

 No sibling entries reduce debug info sizes at the cost of

loading speed (change can be around 10%).

3

What was used in the comparison

 Comparison performed on a C program of about 70,000 lines

of source in 58 source files and 16 header files

 No library code linked in ... all debug information from the

compiled sources

 Uses the same header files

 GCC 4.8.2 using:

arm-none-eabi-gcc –g –gpubnames –gstrict-dwarf

 LLVM tip of trunk using:

clang –target=arm-none-eabi -g

4

DWARF debug section sizes

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

LLVM -O0

LLVM -O1

LLVM -O2

GCC -O0

GCC -O1

GCC -O2

Effect of function inlining

5

DWARF Tags (symbols)

0

500

1000

1500

2000

2500

3000

LLVM -O0

LLVM -O1

LLVM -O2

GCC -O0

GCC -O1

GCC -O2

6

DWARF Attributes (symbol properties)

0

2000

4000

6000

8000

10000

12000

LLVM -O0

LLVM -O1

LLVM -O2

GCC -O0

GCC -O1

GCC -O2

Due to inlined function parameters

Due to inlined functions

7

Are siblings attributes worth the space?

 LLVM deliberately does not generate entries the

DW_AT_sibling attribute due to the size the occupied in the

.debug_info section.

 GCC does generate DW_AT_sibling entries:

 Take ~4% of the .debug_info section size (in this example).

 Contribute no actual debug information.

 Implemented using 4-byte entries.

 ... But of 1508 entries only 96 have a value greater than 255.

 What is the effect of not having sibling entries in a debugger?

 ... Can affect loading speed by about 10%.

8

Line Table Differences

 LLVM does not include system header files/directories in the

line table.

 But symbols defined in the system header files have a file/line

reference The file entry pointing at the current source file.

 LLVM generates “End of Function Prologue” entries.

 Needs support in debugger but will help to remove the need for

heuristics used by debuggers to find the prologue end.

 LLVM (sometimes) marks the function prologue instruction as

a place not to put a source level breakpoint.

 Neither compiler generates “Start of Function Epilogue”

entries.

9

Stack Frame Differences

 LLVM does not generate .debug_frame information for the

selected arm-none-eabi target.

 GCC generates the changes that occur in a function

epilogue, LLVM does not (comparing AARCH64).

The effect of this is that when instruction stepping the

function epilogue in LLVM generated code, register usage in

the called function may be displayed incorrectly.

10

DWARF .debug_types coming soon

 The .debug_types section was added in DWARF 4 in order to

help common up duplicated type information. This removal

of duplicate information can results in smaller file sizes and

as a consequence means debuggers have less debugging

information to process and load.

 I am looking forward to the completion of the current

development effort to implement support for the .debug_types

section.

 GCC already has support for .debug_types, so we can see

the possible benefits of adding this support.

11

DWARF Debug section sizes (GCC)

0

50000

100000

150000

200000

250000

GCC -O2

GCC -O2 (types)

Main sections that change

12

Questions?

13

DWARF debug section sizes

0

20000

40000

60000

80000

100000

120000

140000

160000

180000
LLVM -O0

LLVM -O1

LLVM -O2

GCC -O0

GCC -O1

GCC -O2

14

DWARF Tags (symbols)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

LLVM -O0

LLVM -O1

LLVM -O2

GCC -O0

GCC -O1

GCC -O2

15

DWARF Attributes (symbol properties)

0

2000

4000

6000

8000

10000

12000
a
b
s
tr

a
c
t_

o
ri
g
in

a
c
c
e
s
s
ib

ili
ty

b
y
te

_
s
iz

e

c
a
ll_

fi
le

c
a
ll_

lin
e

c
o
m

p
_
d
ir

c
o
n
s
t_

v
a
lu

e

d
a
ta

_
m

e
m

b
e
r_

lo
c
a
ti
o
n

d
e
c
l_

fi
le

d
e
c
l_

lin
e

d
e
c
la

ra
ti
o
n

e
n
c
o
d
in

g

e
n
tr

y
_
p
c

e
x
te

rn
a
l

fr
a
m

e
_
b
a
s
e

h
ig

h
_
p
c

in
lin

e

la
n
g
u
a
g
e

lo
c
a
ti
o
n

lo
w

_
p
c

n
a
m

e

p
ro

d
u
c
e
r

p
ro

to
ty

p
e
d

ra
n
g
e
s

s
ib

lin
g

s
tm

t_
lis

t

ty
p
e

u
p
p
e

r_
b
o

u
n
d

LLVM -O0

LLVM -O1

LLVM -O2

GCC -O0

GCC -O1

GCC -O2

16

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM

Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Any other marks featured

may be trademarks of their respective owners

