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• PGO = Profile Guided Optimization

• More information -> better optimization

• Profile data

• Control flow: e.g., execution counts

• Future extensions: object types, etc.
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What Is It Good For?
• Some examples:

• Block layout

• Spill placement

• Inlining heuristics

• Hot/cold partitioning

• Can significantly improve performance



What’s the Catch?

• Assumes program behavior is always the same

• PGO may hurt performance if behavior changes

• May require some extra build steps
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History of PGO in LLVM

• Instrumentation, profile info and block placement
(2004, Chris Lattner)

• Branch weights and block frequencies
(2011, Jakub Staszak)

• Setting branch weights from execution counts
(2012, Alastair Murray)



Outline

• Front-end instrumentation

• Profiles from sampling

• Using profile info in the optimizer and back-end
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Profiling with Instrumentation
• Pros:

• Detailed information

• Predictability

• Resilient against changes

• Cons:

• Need to build instrumented version

• Running with instrumentation is slower
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Design Goals

• Degrade gracefully when code changes

• Profile data not tied to specific compiler version

• Minimize instrumentation overhead

• Execution counts accurately mapped to source
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Dealing with Change

• Project source code changes

• Detect functions that have changed

• Ignore profile data for those functions only

• Some changes are OK

• Minimum requirement: same control-flow structure



Compiler Changes

• Compiler updates should not invalidate profiles

• LLVM IR generated by front-end often changes

• Associating profiles with IR can be a problem



Source-level Accuracy

• PGO vs. code coverage testing

• Should only have one profile format for both

• Profile data for PGO should be viewable

• Requires profiles to map accurately to source



Use the Source

• Solution: associate profile data with clang ASTs

• Compiler changes are (almost) irrelevant

• Provides info to detect source changes

• Independent of optimization and debug info 



Counters on ASTs

• Walk through ASTs in program order

• Assign counters to control-flow constructs

• Compare number of counters to detect changes

• Can add a hash of ASTs to be more sensitive
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Minimizing Overhead

• Not every block needs a counter

• CFG-based approach: compute a spanning tree

• Can often do as well by following AST structure
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Example
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Stmt

Then

Stmt

Else



No-Return Calls

• Important for code coverage

• Not an issue for PGO
(we don’t have a “likely no-return” attribute)

• A counter after every call would be expensive

• Can we get away with ignoring this?



Instrumentation Overhead:
Compile Time
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Instrumentation Overhead:
Execution Time
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PGO with External Profiling

Diego Novillo



External Profilers
• No changes needed to user application

• Binary runs under control of profiler

• binary instrumentation (valgrind, 
cachegrind)

• hardware counters (perf, oprofile)

• Profilers using HW counters → low 
overhead

• Profiler saves profile results in a file

• Used as input to analysis tools

• Why not use it as input to the 
compiler?



$ perf annotate -l
[ … ]
         :        for (int i = 0; i < N; i++) {
         :          A *= i / 32;
 /home/dnovillo/prog.cc:5
    9.18% :        400520:       mov    %eax,%ecx
    0.00% :        400522:       sar    $0x1f,%ecx
    0.00% :        400525:       shr    $0x1b,%ecx
    0.00% :        400528:       add    %eax,%ecx
    7.89% :        40052a:       sar    $0x5,%ecx
    0.00% :        40052d:       xorps  %xmm0,%xmm0
    0.00% :        400530:       cvtsi2sd %ecx,%xmm0
    8.23% :        400534:       mulsd  0x200aec(%rip),%xmm0        # 601028 <A>
   66.10% :        40053c:       movsd  %xmm0,0x200ae4(%rip)        # 601028 <A>
[ … ]

GOAL: Use all the collected runtime 
knowledge as input to the optimizers



Why External Profiler?

• No need for instrumented builds

• Simplifies build rules for user application

• No build time overhead



Why External Profiler?

• Very low runtime overhead (< 1%)

• Profiles can be collected in production environments

• Profile data is more representative

• Training is done on actual production loads



Why External Profiler?

• Allows application-specific profilers

• e.g., game engines

• Anything that can be converted into hints to the compiler



User Model

Source Code

ProfilePeak 
Optimized 

Binary

-O2 -gline-tables-only

-O2 -fprofile-sample-use -gline-tables-only

Execute under 
profiler

(low overhead)

Base 
Optimized 

Binary



Design
• Profile data often needs conversion

• Samples are associated with 
processor instructions

• External tool converts into mapping 
to source LOCs

• Bad/stale/missing profiles

• Never affect correctness

• Only affect performance

• Scalar pass incorporates profile into IR

• Source locations mapped to IR 
instructions

• Profile kind dictates representation

• Optimizers query via standard 
analysis pass API

• Analysis routines fallback on static 
heuristics



Current Implementation

1. Conversion tool for Linux Perf
(Sample-based profiles)

2. Samples converted to branch weights

3. Profile pass simply annotates the IR

4. Analysis uses IR metadata for estimates

5. Optimizers automatically adjust cost models
(Provided they use the Analysis API properly)
(Work is needed in this area)



Limitations & Restrictions

• Program behaviour must coincide 
with profile

• Stale profiles degrade 
performance (significantly)

• Non-representative runs mislead 
optimizers

• Who do we listen to?

• Warn the user?

• Silently override?

• Is the profile representative?

foo(int x) {
  if (__builtin_expect(x > 100, 1))
    hot();
  else
    cold();
}

main() {
  while (true) foo(rand() % 100);
}

Profile says “LIAR!”



Limitations & Restrictions
• HW counters → IR mapping is 

lossy

• Requires good line table 
information

• Many instructions on the same 
line of code1  foo(int x) {

2    if (x < 100) hot(); else cold();
3  }
4
5  main() {
6    while (true) foo(rand() % 100);
7  }

Line 2 is HOT according to profile

Need to know where in the line
●Column numbers
●DWARF discriminators



Limitations & Restrictions

• The optimizer must use profiles!

• Notably, the inliner



Early Results

NOT 0-BASED!
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Status
• Profile conversion tool for Linux 

Perf Events

• Writes flat profiles to text file

• Working on release

• Scalar pass works with 
SPEC2006

• Produces branch weights

• Trunk patches under review

• In the works

• Other function attributes (e.g. 
cold)

• More efficient profile encoding 
(bitcode)

• Context aware profiles

• Other profile types

• value profiles to disambiguate 
indirect calls



So, we have some profile data...
Now what?







All profile info ends up in a 
common IR annotation

Code Layout

Spill Placement
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Code Layout

Spill Placement

Inliner?A
n

al
y
si

sSource Code

Instrumentation

Sample Profile

IR

Passes access it through a 
common analysis API



BranchProbabilityInfo

succ1:
  ...

succ1:
  ...

succ1:
  ... ...

pred:
  ...
  



define void @f(i1 %a) {
entry:
  ...
  br i1 %a, label %t, label %f, !prof !0

t:
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  ret void
}
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}



BranchProbabilityInfo

succ1:
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succ2:
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succ3:
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entry:
  ...
  

latch:
  br ...



define void @f(i1 %a) {
entry:
  ...
  br i1 %a, label %t, label %f, !prof !0

t:
  ...
  unreachable

f:
  ...
  br label %exit

exit:
  ret void
}
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}



define void @f(i1 %a) {
entry:
  ...
  br i1 %a, label %t, label %f

t:
  ...
  call coldcc void @g()
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  ret void
}

declare coldcc void @g()



define void @f(i32 %i) {
entry:
  %a = icmp eq i32 %i, 0
  br i1 %a, label %t, label %f

t:
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  ret void
}



define void @f(i32 %i) {
entry:
  %a = icmp ne i32 %i, 0
  br i1 %a, label %t, label %f

t:
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  ret void
}



define void @f(i32 %i) {
entry:
  %a = icmp slt i32 %i, 0
  br i1 %a, label %t, label %f

t:
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  ret void
}



define void @f(i8* %p) {
entry:
  %a = icmp eq i8* %p, null
  br i1 %a, label %t, label %f

t:
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  ret void
}



BranchProbabilityInfo

succ1:
  ...

succ2:
  ...

succ3:
  ... ...

switch

latch:
  br ...

entry:



BlockFrequencyInfo

succ1:
  ...

succ2:
  ...

succ3:
  ... ...

switch

latch:
  br ...

entry:



What about MI?
Everything is there too.



Resolving Conflicts

• Some times the profile will directly conflict with other 
information:

• Static heuristics may be contradicted

• Other profiles may be incompatible

• Need to be extremely cautious when disregarding profile 
information, but may be necessary

• When we have bad profiles, bounding the bad impact is both hard 
and important



The hard part: cache 
invalidation!

• What happens when an optimization pass transforms the 
CFG in a way that invalidates annotations on the IR?

• The analyses are easy -- we re-run them

• Annotations are hard



define void @f(i1 %a) {
entry:
  ...
  br i1 %a, label %t, label %f, !prof !0

t:
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  %phi = phi i32 [ ..., %t ], [ ..., %f ]
  ret void
}
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}

Before...



define void @f(i1 %a) {
entry:
  ...
  br i1 %a, label %f, label %t, !prof !0

t:
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  %phi = phi i32 [ ..., %t ], [ ..., %f ]
  ret void
}
!0 = metadata !{metadata !"branch_weights", i32 4, i32 64}

After...



define void @f(i1 %a) {
entry:
  ...
  br i1 %a, label %t, label %f, !prof !0

t:
  ...
  br label %exit

f:
  ...
  br label %exit

exit:
  %phi = phi i32 [ ..., %t ], [ ..., %f ]
  ret void
}
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}

Before...



define void @f(i1 %a) {
entry:
  ...
  ...
  ...
  %phi = select i1 %a, i32 ..., ...
  br i1 %a, label %t, label %f, !prof !0

t:
  br label %exit

f:
  br label %exit

exit:
  ret void
}
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}

After...



define void @f(i32 %a, i32 %b, i32 %c, i32 %d) {
entry:
  ...
  %x = icmp eq i32 %a, %b
  %y = icmp eq i32 %c, %d
  %xy = and i1 %x, %y
  br i1 %xy, label %t, label %f, !prof !0
t:
  ...
  br label %exit
f:
  ...
  br label %exit
exit:
  %phi = phi i32 [ ..., %t ], [ ..., %f ]
  ret void
}
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}

Before...



define void @f(i32 %a, i32 %b, i32 %c, i32 %d) {
entry:
  ...
  %x = icmp eq i32 %a, %b
  br i1 %x, label %entry2, label %f, !prof !0
entry2:
  %y = icmp eq i32 %c, %d
  br i1 %y, label %t, label %f, !prof !0
t:
  ...
  br label %exit
f:
  ...
  br label %exit
exit:
  %phi = phi i32 [ ..., %t ], [ ..., %f ]
  ret void
}
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}

After...



Need other annotations?

• While we believe that block frequency can and should be 
derived from branch weight, there are other things being 
profiled

• May need module-wide call site or function definition 
annotation

• May need value-based annotation for value profiling



Profile Guided Transforms



Spill Placement

• RA has a collection of potential values to spill from registers 
onto the stack to satisfy the allocation problem

• Which spill is chosen will cause a spill inside of different 
blocks

• Can use profile information to prioritize the hot path’s in-
register values



Code Layout

• Called MachineBlockPlacement

• Runs at the very end of MI to lay out the code of a single 
function

• Primarily layout is driven based on the topological structure 
of the CFG and loop nest structure

• Ties are broken using profile information

• Cold regions of code are extracted out-of-line



Hot/Cold Partitioning?

• GCC picks a partition point in the layout of the function and 
emits the two halves under different sections

• The linker can then group the hot regions together, fully 
isolating the cold code frem the hot code even at an IP level



The Inliner

• Today, the inliner doesn’t even know profile information 
exists. Oops.

• LLVM’s inliner is also unusual: mostly focused on enabling 
simplifications: constant propagation, combining, etc.

• Consequentially the primary expected change is to avoid 
inlining into cold regions unhelpfully.



Outlining & Merging

• The more radical change we would like is to do function 
outlining for cold regions

• This will in turn allow a significantly larger set of non-cold 
paths to be considered for simplifying inlining

• Forms in essence a partial inliner by splitting it into two steps

• Outlining in the middle-end allows merging of common cold 
regions (perhaps expanded via macros) by outlining them to 
functions and then running merge functions.



PGO Summary

• Strong analysis support from annotations down

• Two parallel and complementary efforts to annotate with 
profile information, this is going on right now!

• Most basic profile guided transformations in place

• Still a lot of work to do on other transforms (inlining, etc)



Questions?


